翻訳と辞書
Words near each other
・ Vinodini Terway
・ Vinodol
・ Vinodol Hydroelectric Power Plant
・ Vinodol, Croatia
・ Vinodol, Nitra
・ Vinogel
・ Vinograd
・ Vinogradi
・ Vinogradi Peak
・ Vinogradnoe
・ Vinogradov
・ Vinogradov (crater)
・ Vinogradov Fracture Zone
・ Vinogradov's jerboa
・ Vinogradov's jird
Vinogradov's mean-value theorem
・ Vinogradov's theorem
・ Vinogradovca
・ Vinogradovsky
・ Vinogradovsky District
・ Vinogradsky (crater)
・ Vinography
・ Vinohrady
・ Vinohrady Cemetery
・ Vinohrady nad Váhom
・ Vinohrady Theatre
・ Vinohrady tram depot
・ Vinohrady Water Tower
・ Vinokino
・ Vinokur


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Vinogradov's mean-value theorem : ウィキペディア英語版
Vinogradov's mean-value theorem

Vinogradov's mean value theorem is an upper bound for J_(X), the number of solutions to the system of k simultaneous Diophantine equations in 2s variables given by
x_1^j+x_2^j+\cdots+x_s^j=y_1^j+y_2^j+\cdots+y_s^j\quad (1\le j\le k)
with 1\le x_i,y_i\le X, (1\le i\le s). An analytic expression for J_(X) is
J_(X)=\int_|f_k(\mathbf\alpha;X)|^d\mathbf\alpha
where
f_k(\mathbf\alpha;X)=\sum_\exp(2\pi i(\alpha_1x+\cdots+\alpha_kx^k)).
A strong estimate for J_(X) is an important part of the Hardy-Littlewood method for attacking Waring's problem and also for demonstrating a zero free region for the Riemann zeta-function in the critical strip.〔E. C. Titchmarsh (rev. D. R. Heath-Brown): The theory of the Riemann Zeta-function, OUP〕 Various bounds have been produced for J_(X), valid for different relative ranges of s and k. The classical form of the theorem applies when s is very large in terms of k.
== The conjectured form ==

By considering the X^s solutions where x_i=y_i, (1\le i\le s) we can see that J_(X)\gg X^s. A more careful analysis (see Vaughan 〔R.C. Vaughan: The Hardy-Littlewood method, CUP〕 equation 7.4) provides the lower bound
J_\gg X^s+X^.
The main conjectural form of Vinogradov's mean value theorem is that the upper bound is close to this lower bound. More specifically that for any \epsilon>0 we have
J_(X)\ll X^+X^.
If s\ge k(k+1) this is equivalent to the bound
J_(X)\ll X^.
Similarly if s\le k(k+1) the conjectural form is equivalent to the bound
J_(X)\ll X^.
Stronger forms of the theorem lead to an asymptotic expression for J_, in particular for large s relative to k the expression
J_\sim \mathcal C(s,k)X^,
where \mathcal C(s,k) is a fixed positive number depending on at most s and k, holds.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Vinogradov's mean-value theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.